Productos | Noticias | 21 JUL 2017

Desarrollo de aplicaciones de aprendizaje profundo de Intel

Tags: Red
Diseñado para desarrolladores de productos, investigadores y fabricantes, el módulo Movidius Neural Compute busca reducir las actuales barreras al desarrollo, ajuste e implantación de aplicaciones de IA, ofreciendo la elevada capacidad de procesamiento de una red neuronal profunda dedicada en un módulo de tamaño reducido.
intel
Redacción

Intel acaba de lanzar el módulo de informática neuronal Movidius Neural Compute Stick, el primer kit de inferencia de aprendizaje profundo basado en USB y acelerador de inteligencia artificial (AI) independiente del mundo, que aporta la capacidad de procesamiento de una red neuronal profunda dedicada a una amplia gama de dispositivos receptores externos.

A medida que más desarrolladores adoptan enfoques avanzados de aprendizaje automático para crear aplicaciones y soluciones innovadoras, Intel mantiene el compromiso de ofrecer las herramientas de desarrollo y los recursos más completos, para asegurar que los desarrolladores puedan equiparse de cara a una economía digital basada en IA.

Ya sea para entrenar redes neuronales artificiales en la nube de Intel Nervana, optimizar para las cargas de trabajo emergentes, como la inteligencia artificial, la realidad virtual y aumentada o la conducción autónoma mediante procesadores escalables Intel Xeon, o ampliar las fronteras de la IA mediante la unidad de procesamiento de visión Movidius vision processing unit (VPU), Intel ofrece una extensa cartera de herramientas de IA, así como opciones para el entrenamiento y la implantación de la siguiente generación de productos y servicios basados en IA.

El desarrollo de la inteligencia artificial se compone de dos etapas fundamentales: (1) entrenar a un algoritmo mediante grandes conjuntos de datos utilizando técnicas modernas de aprendizaje automático y (2) utilizar el algoritmo en aplicaciones finales encargadas de interpretar datos reales. Esta segunda etapa se conoce como “inferencia” y aplicar la inferencia de forma externa, o de forma nativa desde el dispositivo, aporta numerosos beneficios en términos de latencia, consumo y privacidad:

Compilar: convertir automáticamente una red neuronal convolucional (CNN) basada en Caffe y ya entrenada en una red neuronal integrada y optimizada para operar directamente en la VPU Myriad 2 de Movidius.

Ajustar: las métricas de rendimiento por capa de las redes neuronales, tanto estándar como diseñadas a medida, permiten realizar ajustes efectivos para obtener un rendimiento óptimo con datos reales y un consumo ultra bajo. Los scripts de validación permiten a los desarrolladores comparar la precisión de los modelos optimizados en el dispositivo con la de los modelos originales basados en PC.

Acelerar: el módulo Movidius Neural Compute es el único capaz de actuar como un acelerador discreto de redes neuronales al añadir la capacidad dedicada de inferencia de aprendizaje profundo a las actuales plataformas informáticas para mejorar el rendimiento y la eficiencia.

El módulo Movidius Neural Compute ya se encuentra disponible a un precio recomendado de 79 dólares, a través de distribuidores seleccionados, así como en la conferencia sobre visión artificial y reconocimiento de patrones Computer Vision and Pattern Recognition (CVPR) que se celebrará en Honolulu, Hawái, EE.UU., del 22 al 25 de julio. 

Contenidos recomendados...

Comentar
Para comentar, es necesario iniciar sesión
Se muestran 0 comentarios
X

Uso de cookies

Esta web utiliza cookies técnicas, de personalización y análisis, propias y de terceros, para facilitarle la navegación de forma anónima y analizar estadísticas del uso de la web. Consideramos que si continúa navegando, acepta su uso. Obtener más información